Group Magic Labeling of Cycles with a Common Vertex

K.Kavitha¹, K.Thirusangu²

¹Department of mathematics, Bharathi Women's College, Chennai ²Department of mathematics, S.I.V.E.T. College, Chennai Email: kavitha35@gmail.com, kthirusangu@gmail.com

III. OBSERVATION

Abstract - Let G = (V, E) be a connected simple graph. For any non-trivial additive abelian group A, let $A^* = A - \{0\}$. A function $f: E(G) \to A^*$ is called a labeling of G. Any such labeling induces a map $f^+ \colon V(G) \to A$, defined by $f^+(v) = \sum f(uv)$, where the sum is over all $uv \in E(G)$. If there exist a labeling f whose induced map on V(G) is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. In this paper we obtained the group magic labeling of two or more cycles with a common vertex.

Keywords: A-magic labeling, Group magic, cycles with common vertex.

I. INTRODUCTION

Labeling of graphs is a special area in Graph Theory. A detailed survey was done by Joseph A. Gallian in [4]. Originally Sedlacek has defined magic graph as a graph whose edges are labeled with distinct non- negative integers such that the sum of the labels of the edges incident to a particular vertex is the same for all vertices. Recently A- magic graphs are studied and many results are derived by mathematicians [1,2,3]. It was proved in [2] that wheels, fans, cycles with a P_k chord, books are group magic. In [5] group magic labeling of wheels is given. In [6] the graph $B(n_1, n_2, ..., n_k)$, the k copies of C_{nj} with a common edge or path is labeled . In [7] a biregular graph is defined and group magic labeling of few biregular graphs have been dealt with. In this paper the group magic labeling of two or more cycles with a common vertex is derived.

II. DEFINITIONS

2.1 Let G = (V, E) be a connected simple graph. For any nontrivial additive abelian group A, let $A^* = A - \{0\}$. A function f: E (G) $\rightarrow A^*$ is called a labeling of G. Any such labeling induces a map f⁺: V (G) $\rightarrow A$, defined by $f^+(v) = \sum_{(u,v) \in E(G)} f(u,v)$. If there exists a labeling f which induces a constant label c on V (G), we say that f is an A-magic labeling and that G is an A-magic graph with index c.

2.2 A A-magic graph G is said to be Z_k -magic graph if we choose the group A as Z_k - the group of integers mod k. These Z_k - magic graphs are referred as k - magic graphs.

2.3 A k-magic graph G is said to be k-zero-sum (or just zero sum) if there is a magic labeling of G in Z_k that induces a vertex labeling with sum zero.

2.4 $B_V(n_1, n_2, ..., n_k)$ denotes the graph with k cycles C_j $(j \ge 3)$ of size n_j in which all C_j 's (j=1,2,...k) have a common vertex.

By labeling the edges of even cycle as α , the vertex sum is 2α or if their edges are labeled as α_1 and α_2 alternatively then the vertex sum is $\alpha_1+\alpha_2$. But the edges of odd cycles can only be labeled as α with the index sum 2α .

IV. MAIN RESULTS

4.1.Theorem

The graph G of two cycles C_1 and C_2 with a common vertex is group magic when both cycles are either odd or even.

Proof

G is the graph of 2 cycles C₁ and C₂ with a common vertex. Let u be the common vertex. The vertices which are adjacent with u of the two cycles C₁ and C₂ be u₁, v₁ and u₂, v₂ respectively. If the edges uu₁, uv₁, uu₂, and uv₂ are labeled as $\alpha_{1,\alpha_{2,\alpha_{3}}\&\alpha_{4}}$, the α 's are chosen from A* such that edge labels are nonzero, then the vertex sum at u is $\alpha_{1+\alpha_{2}+\alpha_{3}+\alpha_{4}}$. To get this vertex sum at each of the other vertices we have to label the edges of cycle C₁ as $\alpha_{2+\alpha_{3}+\alpha_{4}}$ and α_{1} alternatively from the edge which is adjacent with uu₁. Similarly the edges of the cycle C₂ are labeled as $\alpha_{1+\alpha_{2}+\alpha_{4}}$ and α_{3} alternatively from the edge which is adjacent with uu₂. This labeling gives the vertex sum as $\alpha_{1+\alpha_{2}+\alpha_{3}+\alpha_{4}}$ at all vertices except at v₁ and v₂.

Case 1: Both C_1 and C_2 are odd cycles.

If C₁ and C₂ are odd cycles the edge which is adjacent with uv_1 gets the label as $\alpha_2 + \alpha_3 + \alpha_4$ and the edge which is incident with uv_2 gets the label as $\alpha_1 + \alpha_2 + \alpha_4$. So at v_1 and v_2 the magic condition requires

 $\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ $\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ Hence $\alpha_{1}=\alpha_{2}$, and $\alpha_{3}=\alpha_{4}$.

Thus when the cycles C_1 and C_2 are odd, the edges incident with u of C_i (i=1,2) are labeled as α_i (i=1,2) the remaining edges of C_1 are labeled as $\alpha_1+2\alpha_2$ and α_1 alternatively while those of C_2 labeled as $2\alpha_1+\alpha_2$ and α_2 alternatively. This labeling gives the vertex sum $2(\alpha_1+\alpha_2)$. Case 2: Both C_1 and C_2 are even

If C_1 and C_2 are even cycles the edge which is adjacent with uv_1 gets the label as α_1 and the edge which is adjacent with uv_2 gets the label as α_3 . So at v_1 and v_2 the magic condition requires

 $\alpha_{1}+\alpha_{2} = \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ $\alpha_{3}+\alpha_{4} = \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ Hence $\alpha_{1}+\alpha_{2}=0$, and $\alpha_{3}+\alpha_{4}=0$ (*)

This in turn leads to the vertex sum also as zero.Hence when the cycles C_1 and C_2 are even, by the above discussion G is only zero sum magic provided the condition (*) holds.

Thus here G is zero sum magic if the labels α_1 and α_2 are chosen in such a way that $\alpha_2 = -\alpha_1$ and $\alpha_4 = -\alpha_3$.

Case 3: Either C_1 or C_2 is odd

Suppose C₁ is odd and C₂ is even, the edge which is adjacent with uv_1 gets the label as $\alpha_2 + \alpha_3 + \alpha_4$ and the edge which is adjacent with uv_2 gets the label as α_3 .

So at v_1 and v_2 the magic condition requires $\alpha_2 + \alpha_3 + \alpha_4 + \alpha_2 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ $\alpha_3 + \alpha_4 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ Hence $\alpha_1 = \alpha_2$, and $\alpha_1 + \alpha_2 = 0$. Which in turn $\alpha_1 = 0$ which is impossible.

Theorem 4.2

 $B_V(n_1, n_2, \dots n_k)$ for $k \ge 3$ is group magic.

Proof:

Denote the common vertex in $B_V(n_1, n_2, ..., n_k)$ as u and the vertices of C_j which are adjacent to u as u_j and v_j for every j = 1, 2, ... k. In each C_j , label the edges uu_j and uv_j as α_{2j-1} and α

 $_{2j}$. At u the vertex sum is $\sum_{i=1}^{2k} \alpha_i$. Choose α 's from A* such that the edge labels are nonzero.

Case 1: Among C_i 's (j=1,2,...k) at least two are even cycles.

For our convenience let us take $C_1, C_2, ..., C_s$ are the odd cycles and the remaining k-s cycles are even. In C_1 the remaining edges are labeled $\sum_{i=1}^{2k} \alpha_i - \alpha_1$ and α_1 alternatively from the edge which is incident with u_1 . At v_1 the magic condition requires

$$\sum_{i=1}^{2k} \alpha_{i} - \alpha_{1} + \alpha_{2} = \sum_{i=1}^{2k} \alpha_{i}.$$

That is $\alpha_{1} = \alpha_{2}$

Similarly we can do for the cycles C_j for j=2,...,s. we have $\alpha_{2j-1} = \alpha_{2j}$ for j=2,...s.

In each C_j for j = s+1,s+2,...k, the remaining edges are labeled $\sum_{i=1}^{2k} \alpha_i - \alpha_{2j-1} \text{ and } \alpha_{2j-1} \text{ alternatively from the edge which is}$

incident with uj. At vjthe magic condition requires

$$\alpha_{2j-1} + \alpha_{2j} = \sum_{i=1}^{2k} \alpha_i \cdot \sum_{\substack{i=1, i\neq 2 \ i\neq 2}}^{2k} \alpha_i = 0$$

This equation can be written as,

$$2\sum_{i=1}^{s} \alpha_{2i-1} + \sum_{i=s+1, i\neq j}^{k} (\alpha_{2i-1} + \alpha_{2i}) = 0 (*)$$

For
$$j = s+1, s+2, ..., k$$

$$\sum_{i=s+1, i\neq j}^{k} (\alpha_{2i-1} + \alpha_{2i}) = M \text{ where } M = -2 \sum_{i=1}^{s} \alpha_{2i-1}.$$

From these k-s equations we get $\alpha_{2j-1} + \alpha_{2j} = \alpha_{2i-1} + \alpha_{2i}$ for every i and j = s+1,s+2,...k

Substituting in (*) we get for each j = s+1,s+2,...k $2\sum_{i=1}^{s} \alpha_{2i-1} + (k-s-1)(\alpha_{2j-1} + \alpha_{2j}) = 0$

$$(\alpha_{2j-1}+\alpha_{2j}) = \frac{1}{k-s-1}M$$
 (**)

Provided k-s $\neq 1$, that is $B_V(n_1,n_2,...n_k)$ contains at least two even cycles.

Thus choosing α_j for j = s+1,s+2,...k in such a way that it satisfies (**) will give the group magic labeling with the vertex sum

$$\sum_{i=1}^{2k} \alpha_{i} = -M + (k-s) (\alpha_{2j-1} + \alpha_{2j}) = -M + \frac{k-s}{k-s-1} M$$
$$= \frac{1}{k-s-1} M \qquad (***)$$

If all the cycles are even then M takes the value zero. So B_V $(n_1,n_2,...n_k)$ is zero sum magic when all n's are even.

Case 2: Among C_i 's (j=1,2,...k) only one even cycle

Let C_kbe the even cycle. Label the edges uu_i and uv_i as α (j=1,2,...k-1) and the remaining edges of those C_i 'sare labeled T- α_{i} and α_{i} alternatively, where T is the vertex sum.

Illustrations

Example 1

let k=4 and s=2 Choose $\alpha_1 = \alpha_2 = 1$, $\alpha_3 = \alpha_4 = 2$, hence M = -2(1+2) = -6 and k-s-1 = 1Now choose $\alpha_5, \alpha_6, \alpha_7$, and α_8 such that $\alpha_5 + \alpha_6 = -6$ and $\alpha_7 + \alpha_8 = -6$

Here the vertex sum is -6.

Example 2

Label the edges u_k and u_k as α_k and $\alpha_{k'}$. Here the vertex sum is

$$T = 2 \sum_{i=1}^{k-1} \alpha_i + \alpha_{k+} \alpha_{k'}$$

Since Ck is even cycle, the remaining edges of Ck are labeled as T- α_k and α_k alternatively from the edge which is incident with u_k . At v_k the magic condition requires

$$\alpha_{\mathbf{k}} + \alpha_{\mathbf{k}'} = 2 \sum_{i=1}^{k-1} \alpha_{\mathbf{i}} + \alpha_{\mathbf{k}} + \alpha_{\mathbf{k}'}$$

Shows $\sum_{i=1}^{k-1} \alpha_i = 0$ (****) Thus choosing α_{j} for j = 1, 2, ..., k-1 in such a way that it satisfies (****) will give the group magic labeling with the vertex sum T = $\alpha_{k} + \alpha_{k'}$

Case 3: All C_i 's (j=1,2,...k) are odd.

Label the edges uu_j and uv_j as α_j (j=1,2,...k) and the remaining edges of C_i are labeled alternatively as $2\sum \alpha_k - \alpha$ _j and α_{j} , this labeling induces a vertex sum $2\sum \alpha_{k}$.

Corollary 4.3

 $B_V(n_1,n_2,...,n_k)$ for $k \ge 3$ is h - magic for h > k where k is the maximum of all edge labels and h should be chosen such that edge labels are nonzero.

REFERENCES

- BaskarBabujee, L.Shobana, "On Z3. magic graphs", Proceedings of the [1] International Conference on mathematics and computer science, 131-136. [2] E. Salehi, "Integer-Magic Spectra of Cycle Related Graphs", Iranian J.
- Math. Sci Inform., 2 (2006), 53-63. Ebrahimsalehi ,"Zero-sum magic graphs and their null sets", ARS [3]
- combinatorial 82(2007),41-53 Joseph A. Gallian, A Dynamic Survey of Graph Labeling, fourteenth
- [4] edition, November 17, 2011.
- K.Kavitha ,R.Sattanathan, "Group magicness of some special graphs", [5]
- International Conference on Mathematical Methods and Computation K.Kavitha ,R.Sattanathan, "Construction of group magic labeling of multiple copies of cycles with different sizes", International Journal of [6] Algorithms, Computing And Mathematics, Vol 3, No.2, May 2010, 1-9
- K.Kavitha, R.Sattanathan, "Group magic labeling in biregular graphs" [7] IJAM, Volume 23 No. 6,2010 ISSN 1311-1728,1103-1116.