Group Magic Labeling of Cycles with a Common Vertex

K.Kavitha ${ }^{1}$, K.Thirusangu ${ }^{2}$
${ }^{1}$ Department of mathematics,Bharathi Women's College, Chennai
${ }^{2}$ Department of mathematics, S.I.V.E.T. College, Chennai
Email: kavitha35@gmail.com, kthirusangu@gmail.com

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected simple graph. For any non-trivial additive abelian group A , let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$. A function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow A^{*}$ is called a labeling of G. Any such labeling induces a map $\mathrm{f}^{+}: V(\mathrm{G}) \rightarrow \mathrm{A}$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum$ $\mathrm{f}(\mathrm{uv})$, where the sum is over all $u v \in \mathrm{E}(\mathrm{G})$. If there exist a labeling f whose induced map on $V(G)$ is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. In this paper we obtained the group magic labeling of two or more cycles with a common vertex.

Keywords: A-magic labeling, Group magic, cycles with common vertex.

I. INTRODUCTION

Labeling of graphs is a special area in Graph Theory. A detailed survey was done by Joseph A. Gallian in [4]. Originally Sedlacek has defined magic graph as a graph whose edges are labeled with distinct non- negative integers such that the sum of the labels of the edges incident to a particular vertex is the same for all vertices. Recently A- magic graphs are studied and many results are derived by mathematicians $[1,2,3]$. It was proved in [2] that wheels, fans, cycles with a P_{k} chord, books are group magic. In [5] group magic labeling of wheels is given. In [6] the graph $B\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, the k copies of C_{nj} with a common edge or path is labeled. In [7] a biregular graph is defined and group magic labeling of few biregular graphs have been dealt with. In this paper the group magic labeling of two or more cycles with a common vertex is derived.

II. DEFINITIONS

2.1 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected simple graph. For any nontrivial additive abelian group A , let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$. A function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{A}^{*}$ is called a labeling of G. Any such labeling induces a map $\mathrm{f}^{+}: V(\mathrm{~V}) \rightarrow \mathrm{A}$, defined by $\mathrm{f}^{+}(\mathrm{v})=$ $\sum_{(u, v) \in \mathrm{E}(\mathrm{G})} \mathrm{f}(\mathrm{u}, \mathrm{v})$. If there exists a labeling f which induces a constant label c on $\mathrm{V}(\mathrm{G})$, we say that f is an A-magic labeling and that G is an A -magic graph with index c .
2.2 A A-magic graph G is said to be Z_{k}-magic graph if we choose the group A as $Z_{k^{-}}$the group of integers mod k. These Z_{k} - magic graphs are referred as k - magic graphs.
2.3 A k-magic graph G is said to be k-zero-sum (or just zero sum) if there is a magic labeling of G in Z_{k} that induces a vertex labeling with sum zero.
$2.4 B_{V}\left(n_{1}, n_{2}, \ldots n_{k}\right)$ denotes the graph with k cycles $C_{j}(j \geq 3)$ of size n_{j} in which all $C_{j} ' s(j=1,2, \ldots k)$ have a common vertex.

III. OBSERVATION

By labeling the edges of even cycle as α, the vertex sum is 2α or if their edges are labeled as α_{1} and α_{2} alternatively then the vertex sum is $\alpha_{1}+\alpha_{2}$. But the edges of odd cycles can only be labeled as α with the index sum 2α.

IV. MAIN RESULTS

4.1.Theorem

The graph G of two cycles C_{1} and C_{2} with a common vertex is group magic when both cycles are either odd or even.

Proof

G is the graph of 2 cycles C_{1} and C_{2} with a common vertex. Let u be the common vertex. The vertices which are adjacent with u of the two cycles C_{1} and C_{2} be u_{1}, v_{1} and u_{2}, v_{2} respectively. If the edges ${u u_{1}}_{1}, \mathrm{uv}_{1}, \mathrm{uu}_{2}$, and uv_{2} are labeled as $\alpha_{1,} \alpha_{2,} \alpha_{3} \& \alpha_{4}$, the α 's are chosen from A* such that edge labels are nonzero, then the vertex sum at u is $\alpha_{1}+\alpha_{2}+\alpha_{3}+$ α_{4}. To get this vertex sum at each of the other vertices we have to label the edges of cycle C_{1} as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and α_{1} alternatively from the edge which is adjacent with u_{1}. Similarly the edges of the cycle C_{2} are labeled as $\alpha_{1}+\alpha_{2}+\alpha$ ${ }_{4}$ and α_{3} alternatively from the edge which is adjacent with uu_{2}. This labeling gives the vertex sum as $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ at all vertices except at v_{1} and v_{2}.

Fig 1
Case 1: Both C_{1} and C_{2} are odd cycles.
If C_{1} and C_{2} are odd cycles the edge which is adjacent with uv_{1} gets the label as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and the edge which is incident with uv_{2} gets the label as $\alpha_{1}+\alpha_{2}+\alpha_{4}$. So at v_{1} and v_{2} the magic condition requires
$\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}=\alpha_{2}$, and $\alpha_{3}=\alpha_{4}$.
Thus when the cycles C_{1} and C_{2} are odd, the edges incident with u of $\mathrm{C}_{\mathrm{i}}(\mathrm{i}=1,2)$ are labeled as $\alpha_{\mathrm{i}}(\mathrm{i}=1,2)$ the remaining edges of C_{1} are labeled as $\alpha_{1}+2 \alpha_{2}$ and α_{1} alternatively while those of C_{2} labeled as $2 \alpha_{1}+\alpha_{2}$ and α_{2} alternatively. This labeling gives the vertex sum $2\left(\alpha_{1}+\alpha_{2}\right)$.

Integrated Intelligent Research (IIR)

Case 2: Both C_{1} and C_{2} are even
If C_{1} and C_{2} are even cycles the edge which is adjacent with uv_{1} gets the label as α_{1} and the edge which is adjacent with uv_{2} gets the label as α_{3}. So at v_{1} and v_{2} the magic condition requires
$\alpha_{1}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{3}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}+\alpha_{2}=0$, and $\alpha_{3}+\alpha_{4}=0$

This in turn leads to the vertex sum also as zero.Hence when the cycles C_{1} and C_{2} are even, by the above discussion G is only zero sum magic provided the condition $(*)$ holds.
Thus here G is zero sum magic if the labels α_{1} and α_{2} are chosen in such a way that $\alpha_{2}=-\alpha_{1}$ and $\alpha_{4}=-\alpha_{3}$.

Case 3: \quad Either C_{1} or C_{2} is odd
Suppose C_{1} is odd and C_{2} is even, the edge which is adjacent with uv_{1} gets the label as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and the edge which is adjacent with ${u v_{2}}^{2}$ gets the label as α_{3}.

So at v_{1} and v_{2} the magic condition requires
$\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{3}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}=\alpha_{2}$, and $\alpha_{1}+\alpha_{2}=0$.
Which in turn $\alpha_{1}=0$ which is impossible.

Fig 2

Theorem 4.2

$B_{V}\left(n_{1}, n_{2}, \ldots n_{k}\right)$ for $k \geq 3$ is group magic.
Proof :
Denote the common vertex in $B_{v}\left(n_{1}, n_{2}, \ldots n_{k}\right)$ as u and the vertices of C_{j} which are adjacent to u as u_{j} and v_{j} for every $j=$ $1,2, \ldots \mathrm{k}$. In each C_{j}, label the edges uu_{j} and uv_{j} as $\alpha_{2 \mathrm{j}-1}$ and α ${ }_{2 j}$. At u the vertex sum is $\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}$. Choose $\alpha \cdot$ s from A^{*} such that the edge labels are nonzero.

Case 1: Among $\mathrm{C}_{\mathrm{j}}{ }^{\prime} \mathrm{s}(\mathrm{j}=1,2, \ldots \mathrm{k})$ at least two are even cycles.
For our convenience let us take $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{s}}$ are the odd cycles and the remaining k -s cycles are even. In C_{1} the remaining edges are labeled $\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}-\alpha_{1}$ and α_{1} alternatively from the

International Journal of Computing Algorithm Volume: 02 Issue: 02 December 2013 Pages:78-80

ISSN: 2278-2397
edge which is incident with u_{1}. At v_{1} the magic condition requires
$\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}-\alpha_{1}+\alpha_{2}=\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}$.
That is $\alpha_{1}=\alpha_{2}$
Similarly we can do for the cycles C_{j} for $\mathrm{j}=2, \ldots$,s. we have α ${ }_{2 \mathrm{j}-1}=\alpha_{2 \mathrm{j}}$ for $\mathrm{j}=2, \ldots \mathrm{~s}$.

In each C_{j} for $j=s+1, s+2, \ldots k$, the remaining edges are labeled $\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}-\alpha_{2 \mathrm{j}-1}$ and $\alpha_{2 \mathrm{j}-1}$ alternatively from the edge which is incident with u_{j}. At v_{j} the magic condition requires

$$
\alpha_{2 \mathrm{j}-1}+\alpha_{2 \mathrm{j}}=\sum_{i=1}^{2 k} \alpha_{\mathrm{i}} \cdot \sum_{\substack{i=1, i \neq 2 \\ i \neq 2 j}}^{2 k} \alpha_{\mathrm{i}}=0
$$

This equation can be written as,
$2 \sum_{i=1}^{s} \alpha_{2 \mathrm{i}-1}+\sum_{i=s+1, i \neq j}^{k}\left(\alpha_{2 \mathrm{i}-1}+\alpha_{2 \mathrm{i}}\right)=0(*)$
For $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$

$$
\sum_{i=s+1, i \neq j}^{k}\left(\alpha_{2 \mathrm{i}-1}+\alpha_{2 \mathrm{i}}\right)=\mathrm{M} \text { where } \mathrm{M}=-2 \sum_{i=1}^{s} \alpha_{2 \mathrm{i}-1} .
$$

From these k-s equations we get $\alpha_{2 \mathrm{j}-1}+\alpha_{2 \mathrm{j}}=\alpha_{2 \mathrm{i}-1}+\alpha_{2 \mathrm{i}}$ for every i and $j=s+1, s+2, \ldots k$

Substituting in (*) we get for each $j=s+1, s+2, \ldots k$
$2 \sum_{i=1}^{s} \alpha_{2 \mathrm{i}-1}+(\mathrm{k}-\mathrm{s}-1)\left(\alpha_{2 \mathrm{j}-1}+\alpha_{2 \mathrm{j}}\right)=0$
$\left(\alpha_{2 j-1}+\alpha_{2 \mathrm{j}}\right)=\frac{1}{k-s-1} \mathrm{M}$
Provided k -s $\neq 1$, that is $\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ contains at least two even cycles.

Thus choosing α_{j} for $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$ in such a way that it satisfies (**) will give the group magic labeling with the vertex sum
$\sum_{i=1}^{2 k} \alpha_{\mathrm{i}}=-\mathrm{M}+(\mathrm{k}-\mathrm{s})\left(\alpha_{2 \mathrm{j}-1}+\alpha_{2 \mathrm{j}}\right)=-\mathrm{M}+\frac{k-s}{k-s-1} \mathrm{M}$
$=\frac{1}{k-s-1} \mathrm{M}$
If all the cycles are even then M takes the value zero. So B_{V} $\left(n_{1}, n_{2}, \ldots n_{k}\right)$ is zero sum magic when all n 's are even.

Case 2: Among C_{j} 's $(j=1,2, \ldots k)$ only one even cycle

Integrated Intelligent Research (IIR)

Let C_{k} be the even cycle. Label the edges uu_{j} and uv_{j} as α_{j} $(\mathrm{j}=1,2, \ldots \mathrm{k}-1)$ and the remaining edges of those C_{j} 'sare labeled $\mathrm{T}-\alpha_{\mathrm{j}}$ and α_{j} alternatively, where T is the vertex sum.

Illustrations
Example 1

Fig 3
let $\mathrm{k}=4$ and $\mathrm{s}=2$
Choose $\alpha_{1}=\alpha_{2}=1, \alpha_{3}=\alpha_{4}=2$, hence $\mathrm{M}=-2(1+2)=-6$ and $\mathrm{k}-\mathrm{s}-1=1$
Now choose $\alpha_{5}, \alpha_{6}, \alpha_{7}$, and α_{8} such that
$\alpha_{5}+\alpha_{6}=-6$ and $\alpha_{7}+\alpha_{8}=-6$
Here the vertex sum is -6 .

Example 2

Fig 4
Label the edges u_{k} and uv_{k} as α_{k} and $\alpha_{\mathrm{k}^{\prime}}$. Here the vertex sum is
$\mathrm{T}=2 \sum_{i=1}^{k-1} \alpha_{\mathrm{i}}+\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}$
Since C_{k} is even cycle, the remaining edges of C_{k} are labeled as T- α_{k} and α_{k} alternatively from the edge which is incident with u_{k}. At v_{k} the magic condition requires
$\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}=2 \sum_{i=1}^{k-1} \alpha_{\mathrm{i}}+\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}$
Shows $\sum_{i=1}^{k-1} \alpha_{\mathrm{i}}=0$

International Journal of Computing Algorithm Volume: 02 Issue: 02 December 2013 Pages:78-80

ISSN: 2278-2397
Thus choosing α_{j} for $\mathrm{j}=1,2, \ldots \mathrm{k}-1$ in such a way that it satisfies $\left({ }^{* * * *)}\right.$ will give the group magic labeling with the vertex sum $\mathrm{T}=\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}$

Case 3: All C_{j} 's $(\mathrm{j}=1,2, \ldots \mathrm{k})$ are odd.
Label the edges uu_{j} and uv_{j} as $\alpha_{\mathrm{j}}(\mathrm{j}=1,2, \ldots \mathrm{k})$ and the remaining edges of C_{j} are labeled alternatively as $2 \sum \alpha_{\mathrm{k}}-\alpha$ ${ }_{\mathrm{j}}$ and α_{j}. this labeling induces a vertex sum $2 \sum \alpha_{\mathrm{k}}$.

Corollary 4.3
$\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ for $\mathrm{k} \geq 3$ is h - magic for $\mathrm{h}>\mathrm{k}$ where k is the maximum of all edge labels and h should be chosen such that edge labels are nonzero.

REFERENCES

[1] BaskarBabujee, L.Shobana, "On Z_{3} - magic graphs", Proceedings of the International Conference on mathematics and computer science, 131-136.
[2] E. Salehi, "Integer-Magic Spectra of Cycle Related Graphs", Iranian J. Math. Sci Inform., 2 (2006), 53-63.
[3] Ebrahimsalehi ,"Zero-sum magic graphs and their null sets", ARS combinatorial 82(2007),41-53
[4] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, fourteenth edition, November 17, 2011.
[5] K.Kavitha ,R.Sattanathan, "Group magicness of some special graphs", International Conference on Mathematical Methods and Computation
[6] K.Kavitha ,R.Sattanathan, "Construction of group magic labeling of multiple copies of cycles with different sizes", International Journal of Algorithms, Computing And Mathematics, Vol 3,No.2,May 2010,1-9
[7] K.Kavitha, R.Sattanathan, "Group magic labeling in biregular graphs" IJAM, Volume 23 No. 6,2010 ISSN 1311-1728,1103-1116.

